Principle #3 — Assume variability; preserve options

Generate alternative system-level designs and subsystem concepts. Rather than try to pick an early
winner, aggressively eliminate alternatives. The designs that survive are your most robust
alternatives.

—Allen C. Ward, Lean Product and Process Development

Systems builders tend to have a natural inclination to try to reduce variability. It just seems that the
more you think you know and have already decided, the further along you are. But this is often not
the case.

While it is true that variability can lead to bad outcomes, the opposite case can also be true.
Variability is not inherently bad or good. Rather, it is the economics associated with the timing and
type of variability that determines the outcomes. A focus on eliminating variability too soon
perpetuates a risk avoidance culture wherein people can’t make mistakes and gain experience by
learning what works and what doesn't.

Other than a general understanding of system intent, Lean systems builders recognize that very little
is actually known at the beginning of the project. If it was, they would have already built it. However,
traditional design practices tend to drive developers to quickly converge on a single option—a point
in the potential solution space—and then modify that design until it eventually meets the system
intent. This can be an effective approach, unless of course one picks the wrong starting point; then
subsequent iterations to refine that solution can be very time consuming and lead to a suboptimal
design [1]. And the bigger and more technically innovative the system is, the higher the odds are that
your starting point was not the optimal one. A better approach, referred to as Set-based Design or
Set-based Concurrent Engineering [2], is illustrated in the figure below.

o—
[e

Multiple @y @i

design G

options &> G
o—

O Pl Q—

e e >
Learning Points -

Point-Based
Adjusted

Single
| SE— Too much

option
P >< to adjust

-

© Scaled Agile, Inc. 1

In this approach, the systems builder initially casts a wide net by considering multiple design choices
at the start. Thereafter, they continuously evaluate economic and technical tradeoffs—typically as
exhibited by objective evidence presented at integration learning points. They then eliminate the
weaker options over time; and finally, converge on a final design, based on the knowledge that has
been gained to that point.

This process leaves design options open as long as possible, converges as and when necessary,
and produces more optimal technical and economic outcomes.

Learn More
[1] lansiti, Marco. “Shooting the Rapids: Managing Product Development in Turbulent Environments.” California Management

Review 38 (1995): 37-58.
[2] Ward, Allan C. and Durward Sobek. Lean Product and Process Development. Lean Enterprise Institute Inc., 2014.

© Scaled Agile, Inc.

Principle #4 — Build incrementally with fast,
integrated learning cycles

The epiphany of integration points is that they control product development and are the leverage
points to improve the system. When timing of integration points slip, the project is in trouble.
—Dantar P. Oosterwal

Building Systems Incrementally
In traditional, stage-gated development, investment cost begins immediately and accumulates until a

solution is delivered. Often, there is little to no actual value delivered until all of the committed
features are available, or the program runs out of time or money. During development, it is difficult to
get any meaningful feedback because the process isn’'t designed for it, and the system isn’t
designed or implemented in such a way that incremental capabilities can be evaluated by the
customer. The risk remains in the program until the deadline, and even into deployment and initial
use. This process is error prone and problematic, and typically results in loss of trust between the
system builder and the customer. In an attempt to adjust for this, customers and systems builders try
even harder to define the requirements and select “the best” design up-front. They also typically
implement even more rigorous stage gates. Each of these solutions actually compounds the
underlying problem. This is a systems-level problem in the development process, and it must be
addressed systemically.

Integration Points Create Knowledge from Uncertainty

Lean systems builders approach the problem differently. Instead of picking a single requirements
and design choice early—assuming that it is both feasible and will provide fitness for purpose—
systems builders work within a range of requirements and design options (Principle 3) and build the
solution incrementally in a series of short time-boxes. Each time-box results in an increment of a
working system that can be evaluated by the system builder and the customer. Subsequent time-
boxes build upon the previous increments and the solution evolves until it is released. The
knowledge gained from integration points is not solely for the purpose of establishing technical
viability. Many integration points can serve as minimum viable solutions or prototypes for testing the
market, establishing usability, and gaining objective customer feedback. Where necessary, these
fast feedback points allow the systems builder to “pivot” to an alternate course of action, one that
should better serve the needs of the intended customers.

© Scaled Agile, Inc. 3

Integration Points Occur by Intent
Cadence-based integration points become the primary focus of the systems builder, via a

development process and a solution architecture that is designed in part for that specific purpose.
Each integration point creates a “pull event” that pulls the various solution elements into an
integrated whole, even though it addresses only a portion of the system intent. Integration points pull
the stakeholders together as well, a routine synchronization that help assure that the evolving
solution addresses the real and current business needs, as opposed to the assumptions that were
established at the beginning. Each integration point delivers its own value by converting uncertainty
into knowledge—knowledge of the technical viability of the current design choice, and knowledge of
the potential viability of the solution, all based on objective measures (Principle #5).

Faster Learning Through Faster Cycles
Integration points are an instantiation of Shewart’s basic Plan-Do-Check-Adjust cycle [3], and
thereby serve as primary mechanism for controlling the variability of solution development.

P D

The more frequent the points, the faster the learning. In complex systems development, local
integration points are used to assure that each element or capability for the system is meeting its
responsibilities in contributing to the overall solution intent. These local points must be further
integrated at the next higher system level. The larger the system, the more such integration levels
exist. Systems builders understand that the fop-level, least-frequent integration point provides for the
only true measure of system progress, and they endeavor throughout to achieve those points as
frequently as possible. All stakeholders understand that when timing of integration points slip, the
project is in trouble. But even then, this timely knowledge helps facilitate the necessary adjustments
to scope, technical approach, cost or delivery timing needed to get the project tracking to revised
expectations.

Learn More

[1] Oosterwal, Dantar P. The Lean Machine: How Harley-Davidson Drove Top-Line Growth and Profitability with Revolutionary Lean
Product Development. Amacom, 2010.

[2] Ward, Allan C. and Durward Sobek. Lean Product and Process Development. Lean Enterprise Institute Inc., 2014.

[3] Deming, W. Edwards. Out of the Crisis. MIT Press, 2000.

© Scaled Agile, Inc. 4

Principle #5 — Base milestones on objective
evaluation of working systems

There was in fact no correlation between exiting phase gates on time and project success ... the
data suggested the inverse might be true.
—Dantar P. Oosterwal, The Lean Machine

The Problem with Phase-Gate Milestones
The development of today’s large systems requires substantial investment—an investment that can

reach millions, tens of millions, and even hundreds of millions of dollars. Together, systems builders
and customers have a fiduciary responsibility to ensure that the investment in new solutions will
deliver the necessary economic benefit. Otherwise, there is no reason to make the investment.
Clearly, stakeholders must collaborate in such a way as to help ensure the prospective economic
benefit throughout the development process and not just engage in “wishful thinking” that all will be
well at the end. To address this challenge, the industry has generally applied a sequential phase-
gated (waterfall) development process, whereby progress is measured—and control is exercised—
via a series of specific milestones.

These phase-gate milestones are not arbitrary. They follow the apparently logical and sequential
process of discovery, requirements, design, development, test, and delivery. Of course, it hasn’t
worked out all that well for many, as Figure 1 shows.

Requirements Design Development Testing
complete complete complete complete
& oV 24 24 Wishful
® — ® thinkin g
. = Kaboom!

Figure 1. The problem with phase-gate milestones

The root causes of this problem is the failure to recognize four critical errors within the basic
assumption that phase gates reveal real progress and thereby mitigate risk:

Centralizing requirements and design decisions in siloed functions that may not be integrally
involved in the solution building.

Forcing too-early design decisions and “false positive feasibility” [1]: An early choice is made for the

best known option at that time; development proceeds under the assumption that everything is on
track; only later comes the discovery that the path chosen is not actually feasible. (Principle #3)

© Scaled Agile, Inc.

Assuming a “point” solution exists and can be built right the first time. This ignores the variability
inherent in the process and provides no legitimate outlet for it. Variability will find a way to express
itself.

Taking up-front decisions creates large batches of requirements, code and tests, and long queues.
This leads to large batch handoffs and delayed feedback. (Principle #6)

Base Milestones on Objective Evidence
Clearly, the phase gate model does not mitigate risk as intended, and a different approach is

needed. Principle #4 — Build incrementally with fast, integrated learning cycles provides elements of
a solution to this dilemma.

Throughout development, the system is built in increments, each of which is an integration point that
demonstrates some evidence as to the viability of the current in-process solution. Unlike phase-gate
development, every milestone involves a portion of each step—requirements, design, development,
testing—together producing an increment of value (see Figure 2). Further, this is done routinely, on
a cadence (Principle #7), which provides the discipline needed to ensure periodic availability and
evaluation, as well as predetermined time boundaries that can be used to collapse the field of less
desirable options.

Demo Demo Demo Demo

O O O O

\ 4 4 4 \ 4

Figure 2. Milestones based on objective evaluation of working systems

What is actually measured at these critical integration points is subject to the nature and type of the
system being built. But the system can be measured and assessed, and evaluated by the relevant
stakeholders frequently, and throughout the solution development life cycle. This provides the
financial, technical, and fithess-for-purpose governance needed to ensure that the continuing
investment will produce a commensurate return.

Learn More
[1] Oosterwal, Dantar P. The Lean Machine: How Harley-Davidson Drove Top-Line Growth and Profitability with Revolutionary Lean
Product Development. Amacom, 2010.

© Scaled Agile, Inc. 6

